
The Usability of Advanced Type Systems:
Rust as a Case Study

Kasra Ferdowsi

04/27/2022
1

Overview

1. History

2. Rust

3. Usability

4. Future Work

2

Overview

1. History

1.1. Linear Types

1.2. Region-based Memory Management

1.3. Ownership Types

2. Rust

3. Usability

4. Future Work

3

1.1 Linear Types

- "Use Exactly Once" [25]:
copy :: a -> (a, a) drop :: a -> ()
copy a = (a, a) drop a = ()

4

1.1 Linear Types

- "Use Exactly Once" [25]:

- Memory management:

5

append :: List -> List -> List
append = λxs -> …

copy :: a -> (a, a) drop :: a -> ()
copy a = (a, a) drop a = ()

1.1 Linear Types

- "Use Exactly Once" [25]:

- Memory management:

6

append :: ¡List -o ¡List -o ¡List
append = ¡λxs -> …

copy :: a -> (a, a) drop :: a -> ()
copy a = (a, a) drop a = ()

1.1 Linear Types

- "Use Exactly Once" [25]:

- Memory management:

7

append :: ¡List -o ¡List -o ¡List
append = λxs -> …

copy :: a -> (a, a) drop :: a -> ()
copy a = (a, a) drop a = ()

Value w/ Linear Type

1.1 Linear Types

- "Use Exactly Once" [25]:

- Memory management:

8

append :: ¡List -o ¡List -o ¡List
append = λxs -> …

copy :: a -> (a, a) drop :: a -> ()
copy a = (a, a) drop a = ()

Function w/ Linear Param

1.2 Region-based Memory Management

- Tofte and Talpin 1997 [24]

9

1.2 Region-based Memory Management

- Tofte and Talpin 1997 [24]

Cyclone! [16]

10

- Tofte and Talpin 1997 [24]

Cyclone! [16]

1.2 Region-based Memory Management

"A Safe Dialect of C"

11

- Region Types [16]

1.2 Region-based Memory Management

region h {
 int* x = rmalloc(h, sizeof(int));
 int? y = rnew(h) { 1, 2, 3 };
 char? z = rprintf(h, "hello");
}

12

- Region Types [16]

1.2 Region-based Memory Management

region h {
 int* x = rmalloc(h, sizeof(int));
 int? y = rnew(h) { 1, 2, 3 };
 char? z = rprintf(h, "hello");
}

maps to a dynamic
growable region of
memory

13

- Region Types [16]

1.2 Region-based Memory Management

region h {
 int* x = rmalloc(h, sizeof(int));
 int? y = rnew(h) { 1, 2, 3 };
 char? z = rprintf(h, "hello");
}

Pointer types are annotated with the name of the region 'h

14

- Region Types [16]

1.2 Region-based Memory Management

region h {
 int*'h x = rmalloc(h, sizeof(int));
 int?'h y = rnew(h) { 1, 2, 3 };
 char?'h z = rprintf(h, "hello");
}

Pointer types are annotated with the name of the region 'h

15

- Statically enforcing Encapsulation

1.3 Ownership Types [6]

16

- Statically enforcing Encapsulation

1.3 Ownership Types [6]

Object-Oriented Programming

17

Linear Types

Region Types

Ownership Types

1 History

18

Linear Types

Region Types

Ownership Types

1 History

19

Memory management
Aliasing
Safety

Overview

1. History

1.1. Linear Types

1.2. Region-based Memory Management

1.3. Ownership Types

2. Rust

3. Usability

4. Future Work

20

Overview

1. History

2. Rust

2.1. Ownership

2.2. Lifetimes

3. Usability

4. Future Work

21

2 Rust

- Started in 2010 @ Mozilla Research

- Mascot is Ferris

- Its cultists are know as "Rustaceans"
community

22

2 Rust

- Ownership & Borrowing

fn main() {

 let owner: Vec<i32> = vec![1, 2, 3];

}

23

2 Rust

- Ownership & Borrowing

fn main() {

 let owner: Vec<i32> = vec![1, 2, 3];

}

24

`owner` owns the vector

2 Rust

- Ownership & Borrowing

fn main() {

 let owner: Vec<i32> = vec![1, 2, 3];

 let reference: &Vec<i32> = &owner;

}

25

2 Rust

- Ownership & Borrowing

fn main() {

 let owner: Vec<i32> = vec![1, 2, 3];

 let reference: &Vec<i32> = &owner;

}

26

`reference` borrows `owner`

2 Rust

- Mutability

fn main() {

 let owner: Vec<i32> = vec![1, 2, 3];

 owner.push(4);

 let reference: &Vec<i32> = &owner;

}

27

2 Rust

- Mutability

fn main() {

 let owner: Vec<i32> = vec![1, 2, 3];

 owner.push(4);

 ^^^^^^^^^^^^^ cannot borrow as mutable

 let reference: &Vec<i32> = &owner;

}

28

2 Rust

- Mutability

fn main() {

 let mut owner: Vec<i32> = vec![1, 2, 3];

 owner.push(4);

 let reference: &Vec<i32> = &owner;

}

29

2 Rust

- Mutability

fn main() {

 let mut owner: Vec<i32> = vec![1, 2, 3];

 owner.push(4);

 let reference: &Vec<i32> = &owner;

}

30

2 Rust

- Mutability

fn main() {

 let mut owner: Vec<i32> = vec![1, 2, 3];

 owner.push(4);

 let reference: &mut Vec<i32> = &mut owner;

 reference.push(5);

}

31

2 Rust

- Mutability

fn main() {

 let mut owner: Vec<i32> = vec![1, 2, 3];

 owner.push(4);

 let reference: &mut Vec<i32> = &mut owner;

 reference.push(5);

}

32

- The three rules of Ownership [9]

2.1 Ownership

33

- The three rules of Ownership [9]

- Checked by the Borrow-Checker

2.1 Ownership

34

2.1 Ownership

1. All values have exactly one owner.

35

2.1 Ownership

1. All values have exactly one owner.

fn main() {
 let v = vec![1, 2, 3];
 let v2 = v;
 print(v);
}

36

2.1 Ownership

1. All values have exactly one owner.

fn main() {
 let v = vec![1, 2, 3];
 let v2 = v; value moved here
 print(v); value used here after move
}

37

2.1 Ownership

2. A reference to a value cannot outlive the owner.

38

2.1 Ownership

2. A reference to a value cannot outlive the owner.

fn main() {
 let v = vec![1, 2, 3];
 let x = &v[0];
 let v2 = v;
 let y = x + 1;
}

39

2.1 Ownership

2. A reference to a value cannot outlive the owner.

fn main() {
 let v = vec![1, 2, 3];
 let x = &v[0];
 let v2 = v;
 let y = x + 1;
}

40

reference

2.1 Ownership

2. A reference to a value cannot outlive the owner.

fn main() {
 let v = vec![1, 2, 3];
 let x = &v[0];
 let v2 = v;
 let y = x + 1;
}

referencemoved

41

2.1 Ownership

2. A reference to a value cannot outlive the owner.

fn main() {
 let v = vec![1, 2, 3];
 let x = &v[0]; borrow out of `v` occurs here
 let v2 = v; move out of `v` occurs here
 let y = x + 1; borrow later used here
}

42

2.1 Ownership

3. A value can have one mutable ref, or many immutable refs.

43

2.1 Ownership

3. A value can have one mutable ref, or many immutable refs.

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

44

2.1 Ownership

3. A value can have one mutable ref, or many immutable refs.

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

fn push(&mut self, value: i32) { =* ==. =/ }

45

2.1 Ownership

3. A value can have one mutable ref, or many immutable refs.

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

fn push(&mut self, value: i32) { =* ==. =/ }

immutable

46

2.1 Ownership

3. A value can have one mutable ref, or many immutable refs.

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

fn push(&mut self, value: i32) { =* ==. =/ }

mutable

47

immutable

2.1 Ownership

3. A value can have one mutable ref, or many immutable refs.

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0]; immutable borrow occurs here
 v.push(4); mutable borrow occurs here
 let y = x + 1; immutable borrow later used here
}

48

2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or

- many immutable references.

49

2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or

- many immutable references.

Affine Types!

50

2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or

- many immutable references.

51

2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or

- many immutable references.

???

52

2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or

- many immutable references.
Lifetimes

53

2.2 Lifetimes

Lifetimes [17]:

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

54

Lifetimes [17]:

'v

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

2.2 Lifetimes

55

'v

Lifetimes [17]:

'x

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

2.2 Lifetimes

56

'x
'a

'v

Lifetimes [17]:

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

2.2 Lifetimes

57

'x
'a

'v

Lifetimes [17]:

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

2.2 Lifetimes

Regions!

58

'x
'a

'v

Lifetimes [17]:

fn main() {
 let mut v = vec![1, 2, 3];
 let x = &v[0];
 v.push(4);
 let y = x + 1;
}

2.2 Lifetimes

Regions!
(But implicit)

59

2 Rust

Quick break!

Any questions so far?

60

Overview

1. History

2. Rust

a. Ownership

b. Lifetimes

3. Usability

4. Future Work

61

Overview

1. History

2. Rust

3. Usability

4. Future Work

62

3.1 Is Rust Difficult?

"Learning Rust Ownership is like navigating a maze where the walls are

made of asbestos and frustration, and the maze has no exits, and every

time you hit a dead end you get an aneurysm and die." [8]

63

Overview

1. History

2. Rust

3. Usability

3.1. Is Rust's Ownership difficult to learn & use?

4. Future Work

64

Overview

1. History

2. Rust

3. Usability

3.1. Is Rust's Ownership difficult to learn & use?

3.2. Why is Rust's Ownership difficult?

4. Future Work

65

Overview

1. History

2. Rust

3. Usability

3.1. Is Rust's Ownership difficult to learn & use?

3.2. Why is Rust's Ownership difficult?

3.3. Why do people use Rust anyway?

4. Future Work

66

3.1 Is Rust Difficult?

- Zeng and Crichton 2019 [26]

"The complexity of the borrow checker was the second most

frequently mentioned complaint"

67

Y

3.1 Is Rust Difficult?

- Fulton and friends 2021 [12]

"A near-vertical learning curve"

68

3.1 Is Rust Difficult?

- Fulton and friends 2021 [12]

"A near-vertical learning curve"

69

3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]

70

3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]

71

3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]

72

Ownership was easy

3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]

73

Aliasing was hard

3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]

74

3.1 Is Rust Difficult?

- What about experienced Rust developers?

75

3.1 Is Rust Difficult?

- What about experienced Rust developers?

- Qin & friends [19]: "Lacking good understanding of Rust's lifetime rules"

76

3.1 Is Rust Difficult?

- What about experienced Rust developers?

- Qin & friends [19]: "Lacking good understanding of Rust's lifetime rules"

- The Rust Survey 2020 [20]: "lifetimes"

77

3.1 Is Rust Difficult?

- What about experienced Rust developers?

- Qin & friends [19]: "Lacking good understanding of Rust's lifetime rules"

- The Rust Survey 2020 [20]: "lifetimes"

- Zhu & friends [27]: "complex lifetime computations"

78

3.1 Is Rust Difficult?

79

3.1 Is Rust Difficult?

Yes!

Lifetimes are difficult even for experienced Rustaceans.

80

3.2 Why Is Rust Difficult?

81

3.2 Why Is Rust Difficult?

Walls of text coming…

Sorry!

82

3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

83

3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

84

3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]

85

3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]

- "a significant part of the benefit of GC in Rust programs is the architectural

simplification", and

- "design was a significant contributor to the difference in performance between

non-Bronze and Bronze participants." [8]

86

3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]

- "a significant part of the benefit of GC in Rust programs is the architectural

simplification", and

- "design was a significant contributor to the difference in performance between

non-Bronze and Bronze participants." [8]

- Rust's borrow-checker "forces a programmer to think differently" [21]

87

3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]

- "a significant part of the benefit of GC in Rust programs is the architectural

simplification", and

- "design was a significant contributor to the difference in performance between

non-Bronze and Bronze participants." [8]

- Rust's borrow-checker "forces a programmer to think differently" [21]

88

- Not just because it's a low-level language!

3.2 Why Is Rust Difficult?

- Error Messages

89

3.2 Why Is Rust Difficult?

- Error Messages

error[E0384]: cannot assign twice to immutable variable `x`
 --> blah.rs:7:5
 |
6 | let x = 1;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`
7 | x += 1;
 | ^^^^^^ cannot assign twice to immutable variable

error: aborting due to previous error

For more information about this error, try `rustc --explain E0384`.

90

3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]

91

3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]

92

3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]

- "Getting weird errors I still don't understand but just fixed

by listening to the compiler"

93

3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]

- "Getting weird errors I still don't understand but just fixed

by listening to the compiler"

- "Error messages were cyclical with things like remove &

then after removing try adding &"

94

3.2 Why Is Rust Difficult?

- Error Messages & Context [27]

95

3.2 Why Is Rust Difficult?

- Error Messages & Context [27]

- Most (59 / 110) contained all necessary information,

- 9 failed to explain how a safety rule works on a particular code construct,

- 32 were missing the key steps in computing a lifetime or a borrow relationship,

- 10 failed to explain the relationship between two lifetime annotations.

96

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

97

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

“I can teach the three rules [of Ownership] in a single lecture to a

room of undergrads. But the vagaries of the borrow checker still

trip me up every time I use Rust!”

98

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

99

let mut v = vec![1, 2];
let x = &mut v[0];
let y = &mut v[1];
*y += *x;

let mut v = vec![1, 2];
let mut iter = v.iter_mut();
let x = iter.next().unwrap();
let y = iter.next().unwrap();
*y += *x;

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

100

let mut v = vec![1, 2];
let x = &mut v[0];
let y = &mut v[1];
*y += *x;

let mut v = vec![1, 2];
let mut iter = v.iter_mut();
let x = iter.next().unwrap();
let y = iter.next().unwrap();
*y += *x;

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

101

let mut v = vec![1, 2];
v.insert(0, v[0]);
v.get_mut(v[0]);

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

102

let mut v = vec![1, 2];
v.insert(0, v[0]);
v.get_mut(v[0]);

Immutable reference in the argument

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

103

let mut v = vec![1, 2];
v.insert(0, v[0]);
v.get_mut(v[0]);

Mutable `self` reference in the argument

3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

104

let mut v = vec![1, 2];
v.insert(0, v[0]); ✓
v.get_mut(v[0]); ✗

3.2 Why Is Rust Difficult?

105

3.2 Why Is Rust Difficult?

1. Needs a change of paradigm

2. Error messages are missing design feedback and necessary context

3. Incompleteness makes building an accurate mental model difficult

106

3.3 Why do people use Rust anyway?

107

3.3 Why do people use Rust anyway?

Read the report!

(Sorry! ☹)

108

3.3 Why do people use Rust anyway?

1. They don't

2. Safety is the most important

3. Tooling is great

4. unsafe code is used a lot, and for good reason

109

Overview

1. History

2. Rust

3. Usability

4. Future Work

110

4 Future Work

Better Error Messages [2]

111

4 Future Work

Better Error Messages [2]

- Programmers do read error messages

112

4 Future Work

Better Error Messages [2]

- Programmers do read error messages

- Rust follows many of the guidelines, but can do better

113

4 Future Work

Better Error Messages [2]

- Programmers do read error messages

- Rust follows many of the guidelines, but can do better

114

Provide Context [4,27]

4 Future Work

Better Error Messages [2]

- Programmers do read error messages

- Rust follows many of the guidelines, but can do better

115

Reduce Cognitive Load

Provide Context [4,27]

4 Future Work

Better Error Messages [2]

- Programmers do read error messages

- Rust follows many of the guidelines, but can do better

116

Reduce Cognitive Load

Provide Context [4,27]

Allow Dynamic Interaction

4 Future Work

How do Rust programmers write code?

117

4 Future Work

How do Rust programmers write code?

- Grounded Theory [5]

118

4 Future Work

How do Rust programmers write code?

- Grounded Theory [5]

- Used in Software Engineering Research [23]

119

4 Future Work

How do Rust programmers write code?

- Grounded Theory [5]

- Used in Software Engineering Research [23]

120

Mis

4 Future Work

How do Rust programmers write code?

- Grounded Theory [5]

- Used in Software Engineering Research [23]

- How Statically-Typed Functional Programmers Write Code [18]

121

Mis

4 Future Work

Program Visualization Tools

122

4 Future Work

Program Visualization Tools

- RustViz [13]

123

4 Future Work

Program Visualization Tools

- Rust Life Assistant [4]

124

fn main() {
let mut x = 4;
let y = foo(&x);
let z = bar(&y);
let w = foobar(&z);
// ...
x = 5;
take(w);

}

fn foo<T>(p: T) -> T { p }
fn bar<T>(p: T) -> T { p }
fn foobar<T>(p: T) -> T { p }
fn take<T>(p: T) -> T { unimplemented!() }

4 Future Work

Program Visualization Tools

- Existing tools focus on runtime values [22]

- Rust needs a tool for static type constraints

125

Overview

1. History

a. Linear Types

b. Region-based Memory

Management

c. Ownership Types

2. Rust

a. Ownership

b. Lifetimes

126

3. Usability

a. Is Rust's Ownership difficult?

b. Why is Rust's Ownership difficult?

c. Why do people use Rust anyway?

4. Future Work

a. Better Error Messages

b. How Do Rust programmers Write Code?

c. Program Visualization Tools

Bibliography

[1] Aldrich, J. et al. 2002. Alias Annotations for Program Understanding. Proceedings of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (New York, NY, USA, 2002), 311–330.

[2] Becker, B.A. et al. 2019. Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. Proceedings of the Working Group Reports on Innovation and Technology in Computer Science Education (New
York, NY, USA, Dec. 2019), 177–210.

[3] Bernardy, J.-P. et al. 2017. Linear Haskell: practical linearity in a higher-order polymorphic language. Proceedings of the ACM
on Programming Languages. 2, POPL (Dec. 2017), 5:1-5:29. DOI:https://doi.org/10.1145/3158093.

[4] Blaser, D. 2019. Simple Explanation of Complex Lifetime Errors in Rust. ETH Z ürich.
[5] Charmaz, K. 2006. Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. SAGE Publishing Inc.
[6] Clarke, D. et al. 2013. Ownership Types: A Survey. Aliasing in Object-Oriented Programming. Types, Analysis and Verification. D.

Clarke et al., eds. Springer. 15–58.
[7] Clarke, D.G. et al. 1998. Ownership Types for Flexible Alias Protection. Proceedings of the 13th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications (New York, NY, USA, 1998), 48–64.
[8] Coblenz, M. et al. 2021. Does the Bronze Garbage Collector Make Rust Easier to Use? A Controlled Experiment.

arXiv:2110.01098 [cs]. (Oct. 2021).
[9] Crichton, W. 2021. The Usability of Ownership. arXiv:2011.06171 [cs]. (Sep. 2021).
[10] Dominik, D. 2018. Visualization of Lifetime Constraints in Rust. ETH Z ürich.

127

https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40

Bibliography (cont.)

[11] Fahndrich, M. and DeLine, R. 2002. Adoption and Focus: Practical Linear Types for Imperative Programming. Proceedings of
the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation (New York, NY, USA, 2002), 13–24.

[12] Fulton, K.R. et al. 2021. Benefits and drawbacks of adopting a secure programming language: rust as a case study. Seventeenth
Symposium on Usable Privacy and Security (SOUPS 2021) (2021), 597–616.

[13] Gongming et al. 2020. RustViz: Interactively Visualizing Ownership and Borrowing. arXiv:2011.09012 [cs]. (Nov. 2020).
[14] Grossman, D. et al. 2005. Cyclone: A type-safe dialect of C. C/C++ Users Journal. 23, 1 (2005), 112–139.
[15] Grossman, D. et al. 2002. Region-based memory management in cyclone. ACM SIGPLAN Notices. 37, 5 (May 2002), 282–293.

DOI:https://doi.org/10.1145/543552.512563.
[16] Jim, T. et al. 2002. Cyclone: A safe dialect of C. Proc. of the 2002 USENIX Annual Technical Conference (Jan. 2002), 275–288.
[17] Jung, R. et al. 2019. Stacked borrows: an aliasing model for Rust. Proceedings of the ACM on Programming Languages. 4, POPL

(Dec. 2019), 41:1-41:32. DOI:https://doi.org/10.1145/3371109.
[18] Lubin, J. and Chasins, S.E. 2021. How statically-typed functional programmers write code. Proceedings of the ACM on

Programming Languages. 5, OOPSLA (Oct. 2021), 155:1-155:30. DOI:https://doi.org/10.1145/3485532.
[19] Qin, B. et al. 2020. Understanding memory and thread safety practices and issues in real-world Rust programs. Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (New York, NY, USA, Jun. 2020),
763–779.

[20] Rust Survey 2020 Results: 2020. https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html. Accessed: 2022-01-31.

128

https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40

Bibliography (cont.)

[21] Shrestha, N. et al. 2020. Here We Go Again: Why is It Difficult for Developers to Learn Another Programming Language?
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (New York, NY, USA, 2020), 691–701.

[22] Sorva, J. et al. 2013. A Review of Generic Program Visualization Systems for Introductory Programming Education. ACM
Transactions on Computing Education. 13, 4 (Nov. 2013), 1–64. DOI:https://doi.org/10.1145/2490822.

[23] Stol, K.-J. et al. 2016. Grounded theory in software engineering research: a critical review and guidelines. Proceedings of the
38th International Conference on Software Engineering (New York, NY, USA, May 2016), 120–131.

[24] Tofte, M. and Talpin, J.-P. 1997. Region-Based Memory Management. Information and Computation. 132, 2 (Feb. 1997),
109–176. DOI:https://doi.org/10.1006/inco.1996.2613.

[25] Wadler, P. 1990. Linear Types can Change the World! Programming Concepts and Methods (1990).
[26] Zeng, A. and Crichton, W. 2019. Identifying Barriers to Adoption for Rust through Online Discourse. arXiv:1901.01001 [cs].

(Jan. 2019).
[27] Zhu, S. et al. 2022. Learning and Programming Challenges of Rust: A Mixed-Methods Study. (2022), 13.

129

https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40
https://www.zotero.org/google-docs/?cvAa40

1.1 Linear Types

- Elsewhere in Linear Types:

a. Vault [11] to Linear Haskell [3]

b. Region [23] and Ownership types [7]

130

- Tofte and Talpin 1997

Cyclone! [15]

1.2 Region-based Memory Management

"A Safe Dialect of C"

Tagged Unions

Existential Types

NULL checks

RBMM

131

- Region Types [15]

1.2 Region-based Memory Management

region h {
 int* x = rmalloc(h, sizeof(int));
 int? y = rnew(h) { 1, 2, 3 };
 char? z = rprintf(h, "hello");
}

char?`r rprintf(region_t<`r> r1, const char? fmt, /*…*/);

pointer from region r1

132

- Statically enforcing Encapsulation

1.3 Ownership Types [6]

133

class Rectangle {
 private Point upperLeft;
 private Point lowerRight;

 public Rectangle(Point ul, Point lr) {
upperLeft = ul;
lowerRight = lr;

 }

 public Point getUpperLeft() {
return new Point(upperLeft.x, upperLeft.y);

 }
}

- AliasJava [1]

1.3 Ownership Types [6]

class Rectangle {
 private owned Point upperLeft;
 private owned Point lowerRight;

 public Rectangle(unique Point ul, unique Point lr) {
upperLeft = ul;
lowerRight = lr;

 }

 public unique Point getUpperLeft() {
return new Point(upperLeft.x, upperLeft.y);

 }
}

134

- Benefits

a. Memory management

b. Safety

c. Comprehension

- Expressiveness

a. Linear Types: non-linear types + read-only references

b. RBMM: garbage-collected heap region

c. Ownership types: external uniqueness

1.4 Shared Ideas

135

2.3 unsafe

- "Escape Hatch", but not really:

a. Dereference a raw pointer
b. Call an unsafe function or method
c. Access or modify a mutable static variable
d. Implement an unsafe trait
e. Access fields of unions

136

2.3 unsafe

137

unsafe fn two_mutable_refs(x: &mut i32) => (&mut i32, &mut i32) {
(&mut *(x as *mut i32), &mut *(x as *mut i32))

}

fn main() {
let mut x = 1;
let (c1, c2) = unsafe { two_mutable_refs(&mut x) };
*c1 += 1;
*c2 += 1;
println!("{}", x);

}

2.1 Locking Bugs

138

fn do_request() {
=/ client: Arc<RwLock<Inner=>
match connect(client.read().unwrap().m) {

 Ok(_) => {
 let mut inner = client.write().unwrap();
 inner.m = mbrs;
 }
 Err(_) => {}

}
}

2.1 Locking Bugs

139

fn do_request() {
=/ client: Arc<RwLock<Inner=>
let result = connect(client.read().unwrap().m);
match result {

 Ok(_) => {
 let mut inner = client.write().unwrap();
 inner.m = mbrs;
 }
 Err(_) => {}

}
}

2.1 Locking Bugs

140

fn do_request() {
=/ client: Arc<RwLock<Inner=>

- match connect(client.read().unwrap().m) {
+ let result = connect(client.read().unwrap().m);
+ match result {
 Ok(_) => {
 let mut inner = client.write().unwrap();
 inner.m = mbrs;
 }
 Err(_) => {}

}
}

