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1.1 Linear Types

- "Use Exactly Once" [25]:
copy :: a -> (a, a)      drop :: a -> ()
copy a = (a, a)          drop a = ()
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1.1 Linear Types

- "Use Exactly Once" [25]:

- Memory management:
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append :: List -> List -> List
append = λxs -> …

copy :: a -> (a, a)      drop :: a -> ()
copy a = (a, a)          drop a = ()
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1.1 Linear Types

- "Use Exactly Once" [25]:

- Memory management:
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append :: ¡List -o ¡List -o ¡List
append = λxs -> …

copy :: a -> (a, a)      drop :: a -> ()
copy a = (a, a)          drop a = ()

Function w/ Linear Param



1.2 Region-based Memory Management

- Tofte and Talpin 1997 [24]
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1.2 Region-based Memory Management

- Tofte and Talpin 1997 [24] 

Cyclone! [16]
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- Tofte and Talpin 1997 [24] 

Cyclone! [16]

1.2 Region-based Memory Management

"A Safe Dialect of C"
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- Region Types [16]

1.2 Region-based Memory Management

region h {
  int* x = rmalloc(h, sizeof(int));
  int? y = rnew(h) { 1, 2, 3 };
  char? z = rprintf(h, "hello");
}
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- Region Types [16]

1.2 Region-based Memory Management

region h {
  int* x = rmalloc(h, sizeof(int));
  int? y = rnew(h) { 1, 2, 3 };
  char? z = rprintf(h, "hello");
}

maps to a dynamic 
growable region of 
memory
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- Region Types [16]

1.2 Region-based Memory Management

region h {
  int* x = rmalloc(h, sizeof(int));
  int? y = rnew(h) { 1, 2, 3 };
  char? z = rprintf(h, "hello");
}

Pointer types are annotated with the name of the region 'h
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- Region Types [16]

1.2 Region-based Memory Management

region h {
  int*'h x = rmalloc(h, sizeof(int));
  int?'h y = rnew(h) { 1, 2, 3 };
  char?'h z = rprintf(h, "hello");
}

Pointer types are annotated with the name of the region 'h
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- Statically enforcing Encapsulation 

1.3 Ownership Types [6]
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- Statically enforcing Encapsulation 

1.3 Ownership Types [6]

Object-Oriented Programming
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Memory management
Aliasing
Safety
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2 Rust

- Started in 2010 @ Mozilla Research

- Mascot is Ferris

- Its cultists are know as "Rustaceans"
community
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2 Rust

- Ownership & Borrowing

fn main() {

  let owner: Vec<i32> = vec![1, 2, 3];

}
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2 Rust

- Ownership & Borrowing

fn main() {

  let owner: Vec<i32> = vec![1, 2, 3];

}

24

`owner` owns the vector
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fn main() {

  let owner: Vec<i32> = vec![1, 2, 3];
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2 Rust

- Ownership & Borrowing

fn main() {

  let owner: Vec<i32> = vec![1, 2, 3];

  let reference: &Vec<i32> = &owner;

}

26

`reference` borrows `owner`



2 Rust

- Mutability

fn main() {

  let owner: Vec<i32> = vec![1, 2, 3];

  owner.push(4);

  let reference: &Vec<i32> = &owner;

}
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2 Rust

- Mutability

fn main() {

  let owner: Vec<i32> = vec![1, 2, 3];

  owner.push(4);

  ^^^^^^^^^^^^^ cannot borrow as mutable

  let reference: &Vec<i32> = &owner;

}

28



2 Rust

- Mutability

fn main() {
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2 Rust

- Mutability

fn main() {

  let mut owner: Vec<i32> = vec![1, 2, 3];

  owner.push(4);

  let reference: &mut Vec<i32> = &mut owner;

  reference.push(5);

}
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2 Rust

- Mutability

fn main() {

  let mut owner: Vec<i32> = vec![1, 2, 3];

  owner.push(4);

  let reference: &mut Vec<i32> = &mut owner;

  reference.push(5);

}
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- The three rules of Ownership [9]

2.1 Ownership 
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- The three rules of Ownership [9]

- Checked by the Borrow-Checker

2.1 Ownership 
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2.1 Ownership

1. All values have exactly one owner.

35



2.1 Ownership

1. All values have exactly one owner.

fn main() {
  let v = vec![1, 2, 3];
  let v2 = v;                    
  print(v);                      
}
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2.1 Ownership

1. All values have exactly one owner.

fn main() {
  let v = vec![1, 2, 3];
  let v2 = v;                    value moved here
  print(v);                      value used here after move
}
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2.1 Ownership

2.    A reference to a value cannot outlive the owner.
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2.1 Ownership

2.    A reference to a value cannot outlive the owner.

fn main() {
  let v = vec![1, 2, 3];
  let x = &v[0]; 
  let v2 = v;
  let y = x + 1;
}

39



2.1 Ownership

2.    A reference to a value cannot outlive the owner.

fn main() {
  let v = vec![1, 2, 3];
  let x = &v[0]; 
  let v2 = v;
  let y = x + 1;
}

40

reference



2.1 Ownership

2.    A reference to a value cannot outlive the owner.

fn main() {
  let v = vec![1, 2, 3];
  let x = &v[0]; 
  let v2 = v;
  let y = x + 1;
}

referencemoved
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2.1 Ownership

2.    A reference to a value cannot outlive the owner.

fn main() {
  let v = vec![1, 2, 3];
  let x = &v[0];              borrow out of `v` occurs here
  let v2 = v;                 move out of `v` occurs here
  let y = x + 1;              borrow later used here
}
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2.1 Ownership

3.    A value can have one mutable ref, or many immutable refs.
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2.1 Ownership

3.    A value can have one mutable ref, or many immutable refs.

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}
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2.1 Ownership

3.    A value can have one mutable ref, or many immutable refs.

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

fn push(&mut self, value: i32) { =* ==. =/ }
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2.1 Ownership

3.    A value can have one mutable ref, or many immutable refs.

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

fn push(&mut self, value: i32) { =* ==. =/ }

immutable
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2.1 Ownership

3.    A value can have one mutable ref, or many immutable refs.

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

fn push(&mut self, value: i32) { =* ==. =/ }

mutable
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immutable



2.1 Ownership

3.    A value can have one mutable ref, or many immutable refs.

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0];            immutable borrow occurs here
  v.push(4);                mutable borrow occurs here
  let y = x + 1;            immutable borrow later used here
}
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2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or 

- many immutable references.
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2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or 

- many immutable references.

Affine Types!
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2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or 

- many immutable references.
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2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or 

- many immutable references.

???
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2.1 Ownership

1. All values have exactly one owner.

2. A reference to a value cannot outlive the owner.

3. A value can have:

- one mutable reference, or 

- many immutable references.
Lifetimes

53



2.2 Lifetimes

Lifetimes [17]:

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}
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Lifetimes [17]:

'v

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

2.2 Lifetimes
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'v

Lifetimes [17]:

'x

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

2.2 Lifetimes
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'x
'a

'v

Lifetimes [17]:

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

2.2 Lifetimes
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'x
'a

'v

Lifetimes [17]:

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

2.2 Lifetimes

Regions!
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'x
'a

'v

Lifetimes [17]:

fn main() {
  let mut v = vec![1, 2, 3];
  let x = &v[0]; 
  v.push(4);
  let y = x + 1;
}

2.2 Lifetimes

Regions!
(But implicit)
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2 Rust

Quick break!

Any questions so far?
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3.1 Is Rust Difficult?

"Learning Rust Ownership is like navigating a maze where the walls are 

made of asbestos and frustration, and the maze has no exits, and every 

time you hit a dead end you get an aneurysm and die." [8]
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3.1 Is Rust Difficult?

- Zeng and Crichton 2019 [26]

"The complexity of the borrow checker was the second most 

frequently mentioned complaint"
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3.1 Is Rust Difficult?

- Fulton and friends 2021 [12]

"A near-vertical learning curve"
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"A near-vertical learning curve"
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3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]
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3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]
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3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]
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Ownership was easy



3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]
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Aliasing was hard



3.1 Is Rust Difficult?

- The Bronze Garbage Collector [8]
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3.1 Is Rust Difficult?

- What about experienced Rust developers?
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3.1 Is Rust Difficult?

- What about experienced Rust developers?

- Qin & friends [19]: "Lacking good understanding of Rust's lifetime rules"
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3.1 Is Rust Difficult?

- What about experienced Rust developers?

- Qin & friends [19]: "Lacking good understanding of Rust's lifetime rules"

- The Rust Survey 2020 [20]: "lifetimes"
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3.1 Is Rust Difficult?

- What about experienced Rust developers?

- Qin & friends [19]: "Lacking good understanding of Rust's lifetime rules"

- The Rust Survey 2020 [20]: "lifetimes"

- Zhu & friends [27]: "complex lifetime computations"
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3.1 Is Rust Difficult?
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3.1 Is Rust Difficult?

Yes!

Lifetimes are difficult even for experienced Rustaceans.
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3.2 Why Is Rust Difficult?
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3.2 Why Is Rust Difficult?

Walls of text coming…

Sorry!
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3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]
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3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]
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3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]
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3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]

- "a significant part of the benefit of GC in Rust programs is the architectural 

simplification", and 

- "design was a significant contributor to the difference in performance between 

non-Bronze and Bronze participants." [8]
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3.2 Why Is Rust Difficult?

- Change of Paradigm

- "interference" & "mindshift" [21]

- Common memory access patterns are unsafe [26]

- "having to redesign code that you know is safe, but the compiler doesn't" [12]

- "a significant part of the benefit of GC in Rust programs is the architectural 

simplification", and 

- "design was a significant contributor to the difference in performance between 

non-Bronze and Bronze participants." [8]

- Rust's borrow-checker "forces a programmer to think differently" [21]
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- Not just because it's a low-level language!



3.2 Why Is Rust Difficult?

- Error Messages
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3.2 Why Is Rust Difficult?

- Error Messages

error[E0384]: cannot assign twice to immutable variable `x`
 --> blah.rs:7:5
  |
6 | let x = 1;
  |     -
  |     |
  |     first assignment to `x`
  |     help: consider making this binding mutable: `mut x`
7 | x += 1;
  | ^^^^^^ cannot assign twice to immutable variable

error: aborting due to previous error

For more information about this error, try `rustc --explain E0384`.
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3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]
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3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]
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3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]

- "Getting weird errors I still don't understand but just fixed

by listening to the compiler"
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3.2 Why Is Rust Difficult?

- Error Messages & Design Feedback [8]

- "Getting weird errors I still don't understand but just fixed

by listening to the compiler"

- "Error messages were cyclical with things like remove & 

then after removing try adding &"
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3.2 Why Is Rust Difficult?

- Error Messages & Context [27]
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3.2 Why Is Rust Difficult?

- Error Messages & Context [27]

- Most (59 / 110) contained all necessary information,

- 9 failed to explain how a safety rule works on a particular code construct,

- 32 were missing the key steps in computing a lifetime or a borrow relationship,

- 10 failed to explain the relationship between two lifetime annotations.

96



3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]
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3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

“I can teach the three rules [of Ownership] in a single lecture to a 

room of undergrads. But the vagaries of the borrow checker still 

trip me up every time I use Rust!”
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3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]
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let mut v = vec![1, 2];
let x = &mut v[0];
let y = &mut v[1]; 
*y += *x;

let mut v = vec![1, 2];
let mut iter = v.iter_mut();
let x = iter.next().unwrap();
let y = iter.next().unwrap(); 
*y += *x;



3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]
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let mut v = vec![1, 2];
let x = &mut v[0];
let y = &mut v[1]; 
*y += *x;

let mut v = vec![1, 2];
let mut iter = v.iter_mut();
let x = iter.next().unwrap();
let y = iter.next().unwrap(); 
*y += *x;



3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

101

let mut v = vec![1, 2];
v.insert(0, v[0]);
v.get_mut(v[0]);



3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

102

let mut v = vec![1, 2];
v.insert(0, v[0]);
v.get_mut(v[0]);

Immutable reference in the argument



3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

103

let mut v = vec![1, 2];
v.insert(0, v[0]);
v.get_mut(v[0]);

Mutable `self` reference in the argument



3.2 Why Is Rust Difficult?

- The Curse of Incompleteness [9]

104

let mut v = vec![1, 2];
v.insert(0, v[0]); ✓
v.get_mut(v[0]);   ✗



3.2 Why Is Rust Difficult?
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3.2 Why Is Rust Difficult?

1. Needs a change of paradigm

2. Error messages are missing design feedback and necessary context

3. Incompleteness makes building an accurate mental model difficult
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3.3 Why do people use Rust anyway?
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3.3 Why do people use Rust anyway?

Read the report!

(Sorry! ☹)
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3.3 Why do people use Rust anyway?

1. They don't

2. Safety is the most important

3. Tooling is great

4. unsafe code is used a lot, and for good reason
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4 Future Work

Better Error Messages [2]
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4 Future Work

Better Error Messages [2]

- Programmers do read error messages
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- Rust follows many of the guidelines, but can do better
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Better Error Messages [2]

- Programmers do read error messages 

- Rust follows many of the guidelines, but can do better
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Provide Context [4,27]



4 Future Work

Better Error Messages [2]

- Programmers do read error messages 

- Rust follows many of the guidelines, but can do better

116

Reduce Cognitive Load

Provide Context [4,27]

Allow Dynamic Interaction



4 Future Work

How do Rust programmers write code?
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4 Future Work

How do Rust programmers write code?

- Grounded Theory [5] 
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- Grounded Theory [5]  

- Used in Software Engineering Research [23]
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4 Future Work

How do Rust programmers write code?

- Grounded Theory [5]  

- Used in Software Engineering Research [23]
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4 Future Work

How do Rust programmers write code?

- Grounded Theory [5]  

- Used in Software Engineering Research [23]

- How Statically-Typed Functional Programmers Write Code [18]

121

Mis



4 Future Work

Program Visualization Tools
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4 Future Work

Program Visualization Tools

- RustViz [13]
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4 Future Work

Program Visualization Tools

- Rust Life Assistant [4]

124

fn main() {
let mut x = 4;
let y = foo(&x);
let z = bar(&y);
let w = foobar(&z);
// ...
x = 5;
take(w);

}

fn foo<T>(p: T) -> T { p }
fn bar<T>(p: T) -> T { p }
fn foobar<T>(p: T) -> T { p }
fn take<T>(p: T) -> T { unimplemented!() }



4 Future Work

Program Visualization Tools

- Existing tools focus on runtime values [22]

- Rust needs a tool for static type constraints

125



Overview

1. History

a. Linear Types

b. Region-based Memory 

Management

c. Ownership Types

2. Rust

a. Ownership

b. Lifetimes
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3. Usability

a. Is Rust's Ownership difficult?

b. Why is Rust's Ownership difficult?

c. Why do people use Rust anyway?

4. Future Work

a. Better Error Messages

b. How Do Rust programmers Write Code?

c. Program Visualization Tools
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1.1 Linear Types

- Elsewhere in Linear Types:

a. Vault [11] to Linear Haskell [3]

b. Region [23] and Ownership types [7]
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- Tofte and Talpin 1997 

Cyclone! [15]

1.2 Region-based Memory Management

"A Safe Dialect of C"

Tagged Unions

Existential Types

NULL checks

RBMM
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- Region Types [15]

1.2 Region-based Memory Management

region h {
  int* x = rmalloc(h, sizeof(int));
  int? y = rnew(h) { 1, 2, 3 };
  char? z = rprintf(h, "hello");
}

char?`r rprintf(region_t<`r> r1, const char? fmt, /*…*/);

pointer from region r1
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- Statically enforcing Encapsulation 

1.3 Ownership Types [6]

133

class Rectangle {
  private Point upperLeft;
  private Point lowerRight;

  public Rectangle(Point ul, Point lr) {
upperLeft = ul;
lowerRight = lr;

  }

  public Point getUpperLeft() {
return new Point(upperLeft.x, upperLeft.y);

  }
}



- AliasJava [1]

1.3 Ownership Types [6]

class Rectangle {
  private owned Point upperLeft;
  private owned Point lowerRight;

  public Rectangle(unique Point ul, unique Point lr) {
upperLeft = ul;
lowerRight = lr;

  }

  public unique Point getUpperLeft() {
return new Point(upperLeft.x, upperLeft.y);

  }
}
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- Benefits

a. Memory management

b. Safety

c. Comprehension

- Expressiveness

a. Linear Types: non-linear types + read-only references

b. RBMM: garbage-collected heap region

c. Ownership types: external uniqueness  

1.4 Shared Ideas
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2.3 unsafe

- "Escape Hatch", but not really:

a. Dereference a raw pointer
b. Call an unsafe function or method
c. Access or modify a mutable static variable
d. Implement an unsafe trait
e. Access fields of unions
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2.3 unsafe

137

unsafe fn two_mutable_refs(x: &mut i32) => (&mut i32, &mut i32) {
(&mut *(x as *mut i32), &mut *(x as *mut i32))

}

fn main() {
let mut x = 1;
let (c1, c2) = unsafe { two_mutable_refs(&mut x) };
*c1 += 1;
*c2 += 1;
println!("{}", x);

}



2.1 Locking Bugs

138

fn do_request() {
=/ client: Arc<RwLock<Inner=>
match connect(client.read().unwrap().m) {

    Ok(_) => {
        let mut inner = client.write().unwrap();
        inner.m = mbrs;
    }
    Err(_) => {}

}
}



2.1 Locking Bugs

139

fn do_request() {
=/ client: Arc<RwLock<Inner=>
let result = connect(client.read().unwrap().m);
match result {

    Ok(_) => {
        let mut inner = client.write().unwrap();
        inner.m = mbrs;
    }
    Err(_) => {}

}
}



2.1 Locking Bugs

140

fn do_request() {
=/ client: Arc<RwLock<Inner=>

- match connect(client.read().unwrap().m) {
+ let result = connect(client.read().unwrap().m);
+ match result {
    Ok(_) => {
        let mut inner = client.write().unwrap();
        inner.m = mbrs;
    }
    Err(_) => {}

}
}


