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In Summary…

Validating AI-generated programs is becoming a part of our lives,

So programmers and end users alike need affordances for doing so!

5



Overview

LEAP:
Live Exploration of AI-Generated Code

Programmers

6

ColDeco:
An End User Spreadsheet Inspection Tool 

for AI-Generated Code

End�Users



Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

7

ColDeco:
An End User Spreadsheet Inspection Tool 

for AI-Generated Code



Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

8

ColDeco:
An End User Spreadsheet Inspection Tool 

for AI-Generated Code



The Cost of Validation

Programmers using AI-generated code…

- Spend significant time validating code suggestions,

- Have trouble evaluating the correctness of generated code,

- Choose validation strategies based on time cost, and so

- Both under- and over-rely on AI code suggestions.
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[Barke et al. 2023, Liang et al. 2023,  Mozannar el al. 2022, Vaithilingam et al. 2022]
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The Cost of Validation

Does Live Programming offer a good interaction for validating AI-generated code?
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User Study

How does Live Programming affect…

1. Code Correctness
2. Over-/Under-Reliance on AI
3. Cognitive Load
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Between Subjects study:

17 Participants

2 Conditions:

1. AI
2. AI + LP

No-LP
LP



Tasks
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Pandas

Box Plot

Bigrams

String Rewriting

API-Heavy Algorithmic

Fixed-prompt

Open-prompt



RQ1: Correctness
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no�correct�suggestions

Live programming helps validate suggestions!
(But does not help fix incorrect ones)



RQ2: Over-/Under-reliance
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6 no-LP vs 0 LP participants mis-judged correctness of their solutions



RQ2: Over-/Under-reliance

"it was easy to understand the behavior of a code suggestion because the 
little boxes on the side allowed for you to preview the results." (P3)

"it saved me the effort of writing multiple print statements." (P1)
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Live programming reduces over-/under-reliance on AI,
by lowering the cost of validation.



RQ3: Cognitive Load
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Live programming significantly reduced the cognitive load of 
exploration for tasks amenable to validation by execution.

NASA�TLX�metrics
on�the�Pandas�task



In Summary…

Live Programming is not a panacea. But!

It’s really powerful for reducing the cost of validating AI-generated programs.
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End User Programming

Live Programming for free
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End Users can’t always read the code

Participants described code examples as 
“overwhelming” (P8) and they “didn’t know 
where to start” (P3, P14). [...]

As a whole, participants wrestled with the 
perceived complexity of coding by adopting 
ad-hoc strategies to understand individual 
expressions and lines of code.

[Lau et al. 2021]



Spreadsheets & AI
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Helper Columns Filtering

Can we leverage familiar spreadsheet concepts 
for end user validation of AI-generated code?

🥹��

Intermediate
Variables

Program
Slicing!
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ColDeco
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df['Abbreviation'] = \
df['First Name'].str[0] + \
df['Middle Name'].str[0] + \
df['Last Name'].str[0]

* [Liu and Sarkar et al. 2023]



ColDeco
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Helper�Columns “Decomposed”�Description



ColDeco
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One�summary�row�per
behavior�of�the�code

Only�referenced�columns�shown
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Implementing Helper Columns

Goal:

Given a pandas programs of the form df[<name>] = <expr>,
extract intermediate sub-exprs representing row-wise operations

Solution  :

1. Identify subexpressions that can be written as Series representing a column,
2. Assign them to new columns in the Dataframe, and
3. Replace the original subexpression with a column reference.

31* Basically, A-Normal Form conversion for Dataframe programs.

*



Implementing Helper Columns
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df['Abbreviation'] = df['First Name'].str[0] + df['Last Name'].str[0]

Series Series

df['$fresh1']      = df['First Name'].str[0]
df['$fresh2']      = df['Last Name'].str[0]
df['Abbreviation'] = df['$fresh1'] + df['$fresh2']



Implementing Helper Columns
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df["Popular"] = df.apply(lambda x:\
"Yes" if x["votes"] > 10000 and x["vote_avg"] >= 8 else "No"\
, axis=1)

df["$fresh1"] = df.apply(lambda x: x["votes"] > 10000, axis=1)
df["$fresh2"] = df.apply(lambda x: x["vote_avg"] >= 8, axis=1)
df["Popular"] = df.apply(lambda x: "Yes" if x["$fresh1"] and x["$fresh2"] else "No", axis=1)



Implementing Summary Rows
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Dataflow analysis, program tracing, etc.?

x := 5
y := x + 2 

… y …

x := x + 1 y := x + 10

Table Filtering: Predicates over the values! 

vote_avg votes votes > 10k Popular

8 7954 False No

8.4 18132 True Yes

vote_avg votes votes > 10k Popular

{positive} {positive} {isFalse} {Enum[No]}

{positive} {positive} {isTrue} {Enum[Yes]}



Implementing Summary Rows
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vote_avg votes Popular

8 7954 No

8.4 18132 Yes



Implementing Summary Rows

1. Expand all helper columns.
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vote_avg votes vote_avg >= 8 votes > 10000

…

Popular

8 7954 True False No

8.4 18132 True True Yes



Implementing Summary Rows

1. Expand all helper columns.
2. Tag the values in each column using a predetermined set of predicates:

a. {positive, zero, negative}
b. {isTrue, isFalse}
c. {empty, nonEmpty}
d. Enumeration Value (distinct string values)

37

vote_avg votes vote_avg >= 8 votes > 10000

…

Popular

{positive} {pos…} {isTrue} {isFalse} {enum[No]}

{positive} {pos…} {isTrue} {isTrue} {enum[Yes]}



Implementing Summary Rows

1. Expand all helper columns.
2. Tag the values in each column using a predetermined set of predicates:

a. {positive, zero, negative}
b. {isTrue, isFalse}
c. {empty, nonEmpty}
d. Enumeration Value (distinct string values)

3. Partition the rows based on the vector of tags.
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vote_avg votes vote_avg >= 8 votes > 10000

…

Popular

{positive} {pos…} {isTrue} {isFalse} {enum[No]}

{positive} {pos…} {isTrue} {isTrue} {enum[Yes]}
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User Study

Does ColDeco enable code validation by end users?
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What are users’ impressions of ColDeco’s features?

User study with 24 participants, solving 4 tasks:



User Study

Helper Columns afford transparency:

“show-your-work button” (P19)

It makes the code "less like a black box" (P23)
 

Helping them "pinpoint exactly which part of 
the prompt is not working well" (P15)

ColDeco for Collaboration:

Explain their work to someone else (P11, P15)

Help with understanding complex formulas
(P6, P19)

Automatically document spreadsheets (P6, P15)
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In Summary…

Using familiar concepts can enable end users to validate code suggestions.

PL techniques can offer new affordances, even if the user doesn’t see the program!
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Overview

LEAP:
Live Exploration of AI-Generated Code

Live�Programming

for

Programmers
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ColDeco:
An End User Spreadsheet Inspection Tool 

for AI-Generated Code

PL�Techniques

for

End�Users
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Bonus Slides
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Code Generation in the Wild
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Excel FlashFill An End User Tool:

- Input-Output Examples

- Output program not shown

“It’s a great concept, but it can also lead to lots 
of bad data. [...] Be very careful. [...]”

John Walkenbach
(Cited in [Mayer 2015])



Github Copilot

GitHub Copilot
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A Developer Tool:

- Code Context + Natural Language 

- Only output program is shown

Programmers using AI-generated code…

1. Significant time validating code suggestions,

2. Trouble evaluating code correctness, and

3. Under- and over-rely on AI code suggestions.



Grounded Copilot
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Acceleration vs. Exploration

unintentional Prompting intentional with comments /
invoke side panel

"pattern matching" Validation explicit validation via
elimination / execution / 

documentation

unit of focus
(sub-expression / statement)

Scope entire function +
multiple alternatives

unwilling to edit Mismatch
Tolerance

willing to edit / debug /
"rip apart" / cherry-pick



Participants

Occupation:

15 academia

2 industry

Python Usage:

2 occasionally

8 regularly

7 almost every day
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n = 17



RQ4: Users' Impressions
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LEAP was more usable and more useful.



User Impressions
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Users liked ColDeco



User Impressions
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Usability of Summary Rows

"I  don’t really understand it, so I wanted to look at the table myself." (P6)

“It brings the different outcomes and behaviors to the front of the screen very 
quickly.” (P16)

"I think I didn’t  understand summary rows before this [...] Maybe I got used to it 
because it’s my fourth time using this program" (P14)
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Summary Rows had a steeper learning curve


