
Exploring and Validating AI-Generated Programs
Through Concrete Values

Kasra Ferdowsi

The Usability of LLM Code Generation

2

GitHub Copilot OpenAI ChatGPT

The Usability of LLM Code Generation

3

The Usability of LLM Code Generation

4

In Summary…

Validating AI-generated programs is becoming a part of our lives,

So programmers and end users alike need affordances for doing so!

5

Overview

LEAP:
Live Exploration of AI-Generated Code

Programmers

6

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

End�Users

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

7

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

8

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

The Cost of Validation

Programmers using AI-generated code…

- Spend significant time validating code suggestions,

- Have trouble evaluating the correctness of generated code,

- Choose validation strategies based on time cost, and so

- Both under- and over-rely on AI code suggestions.

9

[Barke et al. 2023, Liang et al. 2023, Mozannar el al. 2022, Vaithilingam et al. 2022]

10

The Cost of Validation

Does Live Programming offer a good interaction for validating AI-generated code?

11

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

12

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

13

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

User Study

How does Live Programming affect…

1. Code Correctness
2. Over-/Under-Reliance on AI
3. Cognitive Load

14

Between Subjects study:

17 Participants

2 Conditions:

1. AI
2. AI + LP

No-LP
LP

Tasks

15

Pandas

Box Plot

Bigrams

String Rewriting

API-Heavy Algorithmic

Fixed-prompt

Open-prompt

RQ1: Correctness

16

no�correct�suggestions

Live programming helps validate suggestions!
(But does not help fix incorrect ones)

RQ2: Over-/Under-reliance

17

6 no-LP vs 0 LP participants mis-judged correctness of their solutions

RQ2: Over-/Under-reliance

"it was easy to understand the behavior of a code suggestion because the
little boxes on the side allowed for you to preview the results." (P3)

"it saved me the effort of writing multiple print statements." (P1)

18

Live programming reduces over-/under-reliance on AI,
by lowering the cost of validation.

RQ3: Cognitive Load

19

Live programming significantly reduced the cognitive load of
exploration for tasks amenable to validation by execution.

NASA�TLX�metrics
on�the�Pandas�task

In Summary…

Live Programming is not a panacea. But!

It’s really powerful for reducing the cost of validating AI-generated programs.

20

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

21

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

22

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

1. End User Programming

2. ColDeco Example

3. Implementation

4. User Study

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

23

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

1. End User Programming

2. ColDeco Example

3. Implementation

4. User Study

End User Programming

Live Programming for free

24

End Users can’t always read the code

Participants described code examples as
“overwhelming” (P8) and they “didn’t know
where to start” (P3, P14). [...]

As a whole, participants wrestled with the
perceived complexity of coding by adopting
ad-hoc strategies to understand individual
expressions and lines of code.

[Lau et al. 2021]

Spreadsheets & AI

25

Helper Columns Filtering

Can we leverage familiar spreadsheet concepts
for end user validation of AI-generated code?

🥹��

Intermediate
Variables

Program
Slicing!

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

26

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

1. End User Programming

2. ColDeco Example

3. Implementation

4. User Study

ColDeco

27

df['Abbreviation'] = \
df['First Name'].str[0] + \
df['Middle Name'].str[0] + \
df['Last Name'].str[0]

* [Liu and Sarkar et al. 2023]

ColDeco

28

Helper�Columns “Decomposed”�Description

ColDeco

29

One�summary�row�per
behavior�of�the�code

Only�referenced�columns�shown

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

30

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

1. End User Programming

2. ColDeco Example

3. Implementation

4. User Study

Implementing Helper Columns

Goal:

Given a pandas programs of the form df[<name>] = <expr>,
extract intermediate sub-exprs representing row-wise operations

Solution :

1. Identify subexpressions that can be written as Series representing a column,
2. Assign them to new columns in the Dataframe, and
3. Replace the original subexpression with a column reference.

31* Basically, A-Normal Form conversion for Dataframe programs.

*

Implementing Helper Columns

32

df['Abbreviation'] = df['First Name'].str[0] + df['Last Name'].str[0]

Series Series

df['$fresh1'] = df['First Name'].str[0]
df['$fresh2'] = df['Last Name'].str[0]
df['Abbreviation'] = df['$fresh1'] + df['$fresh2']

Implementing Helper Columns

33

df["Popular"] = df.apply(lambda x:\
"Yes" if x["votes"] > 10000 and x["vote_avg"] >= 8 else "No"\
, axis=1)

df["$fresh1"] = df.apply(lambda x: x["votes"] > 10000, axis=1)
df["$fresh2"] = df.apply(lambda x: x["vote_avg"] >= 8, axis=1)
df["Popular"] = df.apply(lambda x: "Yes" if x["$fresh1"] and x["$fresh2"] else "No", axis=1)

Implementing Summary Rows

34

Dataflow analysis, program tracing, etc.?

x := 5
y := x + 2

… y …

x := x + 1 y := x + 10

Table Filtering: Predicates over the values!

vote_avg votes votes > 10k Popular

8 7954 False No

8.4 18132 True Yes

vote_avg votes votes > 10k Popular

{positive} {positive} {isFalse} {Enum[No]}

{positive} {positive} {isTrue} {Enum[Yes]}

Implementing Summary Rows

35

vote_avg votes Popular

8 7954 No

8.4 18132 Yes

Implementing Summary Rows

1. Expand all helper columns.

36

vote_avg votes vote_avg >= 8 votes > 10000

…

Popular

8 7954 True False No

8.4 18132 True True Yes

Implementing Summary Rows

1. Expand all helper columns.
2. Tag the values in each column using a predetermined set of predicates:

a. {positive, zero, negative}
b. {isTrue, isFalse}
c. {empty, nonEmpty}
d. Enumeration Value (distinct string values)

37

vote_avg votes vote_avg >= 8 votes > 10000

…

Popular

{positive} {pos…} {isTrue} {isFalse} {enum[No]}

{positive} {pos…} {isTrue} {isTrue} {enum[Yes]}

Implementing Summary Rows

1. Expand all helper columns.
2. Tag the values in each column using a predetermined set of predicates:

a. {positive, zero, negative}
b. {isTrue, isFalse}
c. {empty, nonEmpty}
d. Enumeration Value (distinct string values)

3. Partition the rows based on the vector of tags.

38

vote_avg votes vote_avg >= 8 votes > 10000

…

Popular

{positive} {pos…} {isTrue} {isFalse} {enum[No]}

{positive} {pos…} {isTrue} {isTrue} {enum[Yes]}

Overview

LEAP:
Live Exploration of AI-Generated Code

1. The Cost of Validation

2. LEAP demo

3. User Study

39

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

1. End User Programming

2. ColDeco Example

3. Implementation

4. User Study

User Study

Does ColDeco enable code validation by end users?

40

What are users’ impressions of ColDeco’s features?

User study with 24 participants, solving 4 tasks:

User Study

Helper Columns afford transparency:

“show-your-work button” (P19)

It makes the code "less like a black box" (P23)

Helping them "pinpoint exactly which part of
the prompt is not working well" (P15)

ColDeco for Collaboration:

Explain their work to someone else (P11, P15)

Help with understanding complex formulas
(P6, P19)

Automatically document spreadsheets (P6, P15)

41

In Summary…

Using familiar concepts can enable end users to validate code suggestions.

PL techniques can offer new affordances, even if the user doesn’t see the program!

42

Overview

LEAP:
Live Exploration of AI-Generated Code

Live�Programming

for

Programmers

43

ColDeco:
An End User Spreadsheet Inspection Tool

for AI-Generated Code

PL�Techniques

for

End�Users

References
N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do Users Write More Insecure Code with AI Assistants?,” 2022

S. Barke, M. B. James, N. Polikarpova, “Grounded Copilot: How Programmers Interact with Code-Generating Models,” 2023

J. T. Liang, C. Yang, and B. A. Myers, “Understanding the Usability of AI Programming Assistants.” 2023

H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted
Programming,” 2022

P. Vaithilingam, T. Zhang and E. Glassman, “Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models,” 2022

N. Polikarpova, “How Programmers Interact with AI Assistants,” 2023

L. Chen, M. Zaharia, and J. Zou, “How is ChatGPT’s behavior changing over time?,” 2023

S. Lau, S. S. Ragavan, K. Milne, T. Barik, and A. Sarkar, “TweakIt: Supporting End-User Programmers Who Transmogrify Code,” 2021

M. X. Liu, A. Sarkar, C. Negreanu, B. Zorn, J. Williams, N. Toronto, and A. D. Gordon, “‘What It Wants Me To Say’: Bridging the
Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models,” 2023

44

Bonus Slides

45

Code Generation in the Wild

46

Excel FlashFill An End User Tool:

- Input-Output Examples

- Output program not shown

“It’s a great concept, but it can also lead to lots
of bad data. [...] Be very careful. [...]”

John Walkenbach
(Cited in [Mayer 2015])

Github Copilot

GitHub Copilot

47

A Developer Tool:

- Code Context + Natural Language

- Only output program is shown

Programmers using AI-generated code…

1. Significant time validating code suggestions,

2. Trouble evaluating code correctness, and

3. Under- and over-rely on AI code suggestions.

Grounded Copilot

48

Acceleration vs. Exploration

unintentional Prompting intentional with comments /
invoke side panel

"pattern matching" Validation explicit validation via
elimination / execution /

documentation

unit of focus
(sub-expression / statement)

Scope entire function +
multiple alternatives

unwilling to edit Mismatch
Tolerance

willing to edit / debug /
"rip apart" / cherry-pick

Participants

Occupation:

15 academia

2 industry

Python Usage:

2 occasionally

8 regularly

7 almost every day

49

n = 17

RQ4: Users' Impressions

50

LEAP was more usable and more useful.

User Impressions

51

Users liked ColDeco

User Impressions

52

Usability of Summary Rows

"I don’t really understand it, so I wanted to look at the table myself." (P6)

“It brings the different outcomes and behaviors to the front of the screen very
quickly.” (P16)

"I think I didn’t understand summary rows before this [...] Maybe I got used to it
because it’s my fourth time using this program" (P14)

53

Summary Rows had a steeper learning curve

