
Towards Human-Centered Types & Type Debugging
Kasra Ferdowsi
(He/They)
PhD Student

@kasra_ferdowsi

hci.social/@kasra

Overview

A Critique of Foundations for Human-Centered Types*:

1. Expressiveness v. Usability
2. Tool- v. Human-Centric Types

* Technically, any static semantics.

A Concrete Example:

1. A Problem with Rust
2. A Solution?

Types are mainstream!

Expressiveness v. Usability

Consider Ownership Types*:

- From Object-Oriented Programming, often for Java.
- Evaluated on…

* [Clarke et al. 1998, Aldrich et al. 2002, Boyapati et al. 2003]

- Expressiveness
- Syntactic Overhead

Expressiveness v. Usability*

Expressiveness: Usability:

* [Hage 2020]

Usability in Type Error Messages*

We've addressed Usability in Type Error Messages:
Experience […] shows that from a type error message it is often hard to deduce the actual
cause of the error and understand it [1, 2, 3, 4, 9, 10, 17, 19, 20, 21, 22, 23, 24, 25, 26].

[Chitil 2001]

* [Clack and Myers 1995, Lerner el al. 2007, Chen and Erwig 2014, Zhang and Myers 2014,
 Tirronen et al. 2015, Zhang et al. 2017]

And only with Tool-Centric solutions.

But they only focus on error localization and correction…

Tool- v. Human-Centric Debugging

Consider Guided Type Debugging*.

- Elicit feedback from the user.

* [Chen and Erwig 2014]

- Employ the User to help the tool understand.

 :

What is the expected type of rR?

Tool- v. Human-Centric Debugging

Tool-Centric: Squid-Centric:
Human

Overview

A Critique of Foundations for Human-Centered Types1:

1. Expressiveness v. Usability
2. Tool- v. Human-Centric Types

1 Technically, any static semantics.

A Concrete Example:

1. A Problem with Rust
2. A Solution?

A Problem with Rust

Rust's Ownership:

- At most single mutable access to each value in the program.
- Statically guaranteed by its type system.

Rust's usability:

"Learning Rust Ownership is like navigating a maze where the walls are
made of asbestos and frustration, and the maze has no exit, and every
time you hit a dead end you get an aneurysm and die"

Student Participant from [Coblenz et al. 2022]

A Problem with Rust

Error localization and correction Feedback that "aid design and comprehension"

A Solution?

Scalad [Plociniczak 2016] Compositional Exploration of Types
[Chitil 2001]

Expression: (:) (last xs)
Type : [a]->[a]
with xs [[a]]
 because
Expressions: (:) last xs
Types: a->[a]->[a] b
with xs [[b]]

A Solution?

x : b x : [[b]]
Expression: (:) (last xs)
Type : [a]->[a]
with xs [[a]]

Human-Centered Type Debugging

Isn't this your type?

Isn't this your
expression? Yup.

And this is your type
annotation? Yup.

That makes sense to me.

They're irreconcilable.
And if that's the case,
one must be incorrect.

Larger architectural implications?

A Solution?

Summary

Also Happy Valentine's Day!!!

Isn't this your type?

Feedback / Questions / Favorite Love Song?

Isn't this your type?

