
PLATEAU
13th Annual Workshop at the
Intersection of PL and HCI

DOI: 10.35699/1983-
3652.yyyy.nnnnn

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
Creative Commons Attribution
4.0 International License.

Towards Human-Centered Types & Type Debugging
Kasra Ferdowsi �1

1University of California, San Diego, CA, USA

Abstract
Advanced type systems, such as Rust’s Ownership, are gaining wider popularity among mainstream programming
languages. And yet, despite users’ evident struggles with working with these systems, research on tools and
techniques for improving the usability of types is rather scarce, and focused mostly on improving type error
messages. In this paper, I hope to spark a discussion on human-centered tools and techniques for working with
advanced type systems by surveying previous works and synthesizing them into a set of sketches for future
research.
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1 Introduction
Programming Language researchers have spent decades developing type systems with a variety of
crucial benefits, from the most basic static guarantees about program behavior, to safe concurrency [1]
and automatic memory management without garbage collection [2]. And we have finally begun to see
such systems influencing mainstream programming languages [3]. Rust, with its combination of affine
and region types, is slowly but surely gaining in popularity [4]. TypeScript seems to be overtaking
JavaScript in some areas [5]. Even Python, which long held out as a dynamically typed language, has
added a powerful type system, a strict static type checker pyright , and features that until recently
were only available in functional languages, from union types [6] to variadic generics [7]. Yet, as we
have seen from the slow growth of Rust [8], and attestations of the difficulty of debugging type errors
in PL research [9]–[16], languages with complex type systems tend to have a steep learning curve that
remains a barrier to adopting them.

This presents a clear need for tools and techniques for learning to reason about such advanced
type systems1. But the history of usability research into such systems is almost entirely restricted to
improving type error messages, and except for some recent works on the usability of Rust, tended not
to include a human-centered evaluation at all. So in this paper, I hope to present a discussion on
human-centered design and evaluation of tools for learning and working with advanced type systems
by surveying existing works and synthesizing them into a set of sketches for future research.

The rest of the paper is structured as follows: Sec. 2 provides a brief summary of research I am
aware of on improving the usability of type systems, and discusses some of the limitations to the
approaches taken in this area. In parallel to it, Sec. 3 introduces more recent works on the usability of
the Rust programming language which, using human-centered methods, shows some of the real-world
challenges faced by users of Rust’s infamous Ownership system. Sec. 4 then brings these parallel
discussions together and presents sketches for truly human-centered approaches to working with
advanced type systems.

2 The Usability of Advanced Type Systems
Research on types has existed for longer than Computer Science itself [17]. Yet, despite a plethora of
type systems and features from Linear [1] to Dependent types [18], there has been a general disinterest
in the usability aspects of working with such type systems [19].

2.1 Expressiveness vs. Usability
Papers that introduce a type system tend to report what it is like to program using that system.
However, rather than considering this an issue of usability, they focus on expressiveness, i.e. the
possibility of writing interesting programs that type check.

1 A better term would be static semantics, both because this argument is not restricted to type systems, and because
“What is a type?” is a sure way to start a fight among PL researchers. However, given that the majority of works cited
here focus on type errors, and for the sake of brevity, I will use “type” in this paper.
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As an example consider Ownership types [20]. The various Ownership type systems grew out
of Object-Oriented Programming research, and tended to focus on the popular Java programming
language, with many papers evaluating their type system’s expressiveness [21]–[24], and some even
explicitly investigating their effects on program comprehension [20], [21]. In their evaluations, the
authors of these papers only discussed their own experience writing complex programs using the system,
implying that their ability to do so in indicative of the usability of the type system generally.

However, as Hage [25] also points out, in reality expressiveness can oppose usability, with more
expressive type systems causing type errors to become an unreadable “essay of types” [26], and
hinder user productivity. This was likely an issue with methodology, since at the time human-centered
evaluations such as user studies were uncommon and not a standard the PL community held itself to.
Fortunately, as I will discuss in Sec. 3, this seems to be improving as we employ HCI techniques in PL
research generally, and on the usability of type systems specifically.

2.2 Human- vs. Tool-Centric Type Debugging
Of course, the PL community has not totally ignored this usability issue with type systems. As
mentioned in Sec. 1, researchers have been aware of the issues with type errors for some time, resulting
in a number of works on type error debugging. These include works on Type Error Slicing [27],
[28], Counter-Factual Typing [29]–[31] and related type systems [12], [32]–[35] which have tried to
address the specific challenges novice Functional programmers face [11]. These works tend to focus
on improving type error messages, with many specifically addressing the problems of error localization
and correction, i.e. which subexpression causes the type error, and what local edit will fix it2.

I posit that these works, while containing great technical contributions, have a key limitation that
has affected their real-world applicability: Rather than a human-centric approach which focuses on
helping the user understand and fix the error, they center their tool and assume that the solution is a
purely technical one of finding a more sophisticated static analysis.

For example, consider Guided Type Debugging [12]. This work improves upon previous approaches
[10], [36] which employed the user as an oracle for an automated type debugger: by asking for the
intended type of various subexpressions from the user, the type debugger can localize the type error,
and suggest an edit for fixing it. Notice that in this work, even as they bring the user in-the-loop of
the type debugging process, their focus is on the tool ’s ability to localize and correct the error, not
the human’s understanding of it. And they consider this human involvement at all a downside [37].

Due to the lack of both user evaluation in these papers and wider adoption of these techniques, it
remains to be seen if and how these technical contributions improve the usability of advanced type
systems. In recent years, however, a different line of research has employed human-centered methods
to evaluate the usability of Rust’s Ownership semantics. So before returning to how we may address
the limitations of the research surveyed in this section, I will summarize some key findings on working
with advanced type systems that we have learned from the work on Rust.

3 The Usability of Rust’s Ownership
With the emergence of human-centered methods in Programming Languages research [38], we have
seen a small but significant recent set of works that actually evaluate a program’s advanced type
system with non-experts. Specifically, for the Ownership system of the Rust programming language. A
thorough review of Rust’s Ownership is outside the scope of this paper, but in short Rust combines
ideas from Linear [1] and Region [39] types3 to statically guarantee at-most single mutable access
to each value at any point in the program. This guarantee is enforced by a pass in the compiler
colloquially known as the borrow checker. As one may expect, experience and research show that
Rust’s Ownership is difficult to learn, and suggest that the difference in paradigm enforced by the type
system, and the complicated implementation of Ownership rules, are arguably more significant factors

2 A deeper discussion of these works in beyond the scope of this paper. See Hage [25] for a great survey.
3 Frustratingly, despite its name, Rust’s Ownership is not directly related to Ownership types, though it shares some of

their ideas. And, to be accurate, Rust employs Affine [40], not Linear, types. See Ferdowsi [41] for a more thorough
discussion of Rust’s lineage.
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than the quality and accuracy of error messages.

3.1 High-Level Architectural Changes
A common thread among various research on Rust novices is that the biggest challenge in learning
Rust is that Ownership is a very different programming paradigm [42] and, to quote an experienced
C++ developer, “forces the programmer to think differently.” [43]. More concretely, this change in
paradigm requires not just understanding the rules of the borrow checker, but also how these rules
require small and large changes to the structure of the code itself.

We can see this most clearly in Coblenz et. al. [44]. In their study on whether Bronze, a
garbage-collected wrapper for Rust, improved students’ performance in completing a programming
assignment, they found that “most of the benefit of GC comes from architectural simplification” and
that “design was a significant contributor to the difference in performance between non-Bronze and
Bronze participants”. And in Zeng and Crichton [8] who found that “the complexity of the borrow
checker was the second most frequently mentioned complaint”4 in online experience reports they
inspected. Specifically, the rules of Ownership disallow many memory access patterns that are common
in other languages, which leads to frustration.

3.2 Low-Level Minutiae of the Borrow Checker
But the challenges in learning Rust’s Ownership were not restricted to its implications for how to
structure the code. At the other end of the scale, some research suggests that the particular minutiae
of the implementation of the Ownership rules are also a notable challenge for Rust programmers. This
point is made most concisely by Crichton [45], who argues that the rules of Ownership are simple, but
using Rust effectively requires an understanding, not just of these rules, but of precisely how they are
implemented in the borrow checker.

Empirically, this is backed up by Qin et. al. [46], who found that the subtleties of the borrow
checker’s type inference made writing block-free thread-safe code difficult. This is particularly notable,
as it indicates how even experienced Rust developers still struggle with “the vagaries of the borrow
checker” [45]. And demonstrates the need for inspecting, in detail, how the borrow checker reasons
about the user’s code locally.

3.3 Beyond Error Message Accuracy
It’s worth mentioning here that neither the high-level, nor the very low-level usability challenges in
Rust’s Ownership can be easily addressed by improving error messages alone. Rust has famously
well-designed error messages [42] that, while imperfect [47], seem to follow all the best guidelines [48].
And error localization and correction, the focus of many previous works, don’t seem to be an issue
with the Rust compiler.

Instead, Coblenz et al. [44] found that Rust error messages are unhelpful for two reasons. The
first is that they discourage the user from engaging with the type error by providing (a series of) edit
suggestions that can fix the errors without helping the user understand and learn from their error. The
second, as mentioned above, is that the local type errors may signify architectural problems which
cannot be addressed by local fixes at all. In other words, what users need is not accurate localization
and correction, but feedback that “aid design or comprehension.”

We must be careful here not to overgeneralize from these findings, as Rust’s Ownership is arguably
more strict and a more radically different paradigm than, for instance, supporting dependent types.
But we argue that this research can nevertheless shed some light on why it and other advanced type
systems failed to find solid footing in mainstream languages, and how we may best aid programmers
in adopting and working with them now.

4 Second only to compiler version issues.
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4 Sketches for Human-Centered Types and Type Debugging
Given the limitations discussed in Sec. 2, and the empirical findings on the usability of Rust’s Ownership
from Sec. 3, how can we design truly human-centered tools and techniques for working with advanced
type systems? The real answer is of course unknown, so rather than definitive “guidelines” or
“paradigms”, I will conclude here by offering sketches, grounded in existing works, of what these tools
and techniques may be like. I hope that these sketches will encourage and facilitate further research
and discussions on human-centered types and type debugging5.

4.1 Type Exploration
One need demonstrated by the research on Rust, particularly Sec. 3.2, is the ability to inspect how the
type checker reasons about particular parts of a user’s code, regardless of the existence of type errors.
And one solution to this is tools for visualizing and exploring the type checker’s reasoning.

Some works for Rust have already attempted to do this, though they struggle with the size and
complexity of the borrow checker’s reasoning. Dominik [52] and Blaser [53] directly visualize the set
of constraints leading to a type error, which result in large graphs that are difficult to follow. And
RustViz [54] avoids this by placing the burden of writing educational code and appropriate levels of
detail in the visualization to a human teacher.

Instead, we may overcome this by following Scalad [55]–[57] which presents an interactive view of
the Scala Type Derivation Tree, allowing the programmer to explore how the type checker reasons
about their code. This work also lacks a user evaluation [58], so its usability is not clear, but I argue
that it is a promising framework for approaching human-centered type exploration systems.

Rather than directly visualizing the type derivation rules, it maps them to a “high-level repre-
sentation” aimed at answering users’ questions. While I suspect that Scalad’s visualizations are still
too complex, this approach can be extended by designing and evaluating alternative representations
targeted at improving users’ mental models6. And by being designed around interactivity, it allows
for exploring different ways of engagement with the visualizations, which Sorva [61] argues is more
important for learning than the quality of visualizations. Finally, as this approach can work with
arbitrary code, it is specifically suited to how experienced developers learn a new programming language
[43]: by programming in that language, and learning opportunisitcally as they run into issues with
their own code.

4.2 Human-Centered Type Debugging
Another valuable future direction would be to continue the works focused on interactive type debugging.
But, as I argued in Sec. 3.1, an important aspect to type debugging is fixing the broader architecture
of the code, not just local type errors. And until we find technical solutions that can identify and fix
such errors automatically, we need a way to assist the programmer themself in distinguishing local and
architectural errors, and fixing them accordingly.

One possible technique for this comes from Algorithmic Debugging of Type Errors [10], an
interaction model which presents the unsatisfiable type constraint at the location of the error to the
user, and allows them to ask for an explanation of any of the types at that location. They are then
guided through their code as they identify the source of the error. Chen and Erwig [12] criticized the
number of steps required to fix the bug in this approach. But by centering the user in the debugging
process, and allowing them to explore their code from the location of the reported error to its origin
elsewhere, this model may be able to bridge the gap between local types and their wider architectural
implications, providing the much needed aid in design and comprehension.

5 This section is necessarily speculative and limited. Other important discussions include standardized methods for
evaluating human-centered tools and techniques (e.g. Paradigm Problems [49]), addressing the different classes of
type errors (similar to static analysis [50]), accounting for the spectrum of users’ general programming expertise and
expertise in a specific type system, dealing with bugs in type checkers themselves [51], and of course remaining technical
challenges [25].

6 A discussion of specific techniques and theories for this design is outside the scope of this paper, though an understanding
of Notional Machines [59], [60] may be a good place to start.
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