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LLMs for Code Generation”

GitHub OpenAl
Copilot ChatGPT

* For experienced programmers.
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Background

In summary, programmers using Al-generated code...

Spend significant time validating code suggestions,

Have trouble evaluating the correctness of generated code,

Choose validation strategies based on fime cost, and so

Both under- and over-rely on Al code suggestions.



Background

"User interactions with Copilot can be classified into two modes—
acceleration and exploration—akin to the two systems of thought in
dual-process theories of cognition"”

* Grounded Copilot: How Programmers Interact with Code-Generating Models
Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023.
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Live Programming

Demo!
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Research Question:

Does offer a good interaction for

Al-generated code?
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Copilot's Side Panel

home > kas > projects > tmp > @ blah.py > ...
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import matplotlib.pyplot as plt
import pandas as pd

def import_data(path: str):
with open(path, 'r') as f:
\ return pd.read_csv(f)

# Get the data, assuming we have the following
# column names: "group", "time", "success"

df = import_data('my_data.csv')

# create a box plot where each box refers to a group

Synthesizing 10/10 solutions (Duplicates hidden)
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Accept Solution

Suggestion 1

# and the y axis is the time it took to complete the ta
df.boxplot(column="time', by='group')

plt.show()

This is not necessarily the most efficient way to do it

Accept Solution

Suggestion 2

fig, ax = plt.subplots()
ax.boxplot(df['time'], labels=df['group'])
ax.set_ylabel('Time (s)')

ax.set_title('Time taken to complete a task')
plt.show()

You can find more information about box plots here.

Accent Solution
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LEAP

Demo!
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Research Questions

How does Live Programming effect...

Code Correctness
Over-/Under-Reliance on Al
Cognitive Load

Users' Impressions

P WM
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Experimental Conditions

no-PB

Al suggestions

+

Manually Invoked
Terminal Output

PB

Al Suggestions

+

Projection Boxes
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Tasks

Pandas

clean dataframe and compute stats using
pandas

Box Plot

overlay scatter plot over boxplot
using matplotlib

Bigrams

find the most frequent bigram in a string

String Rewriting

parse rewrite rules and apply to a string
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Participants

Occupation:
15 academia

2 industry

Python Usage:
2 occasionally
8 reqularly

7 almost every day
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RQ1: Correctness

PB
No-PB

Bigram Pandas

Correct M Incorrect B Timeout

LEAP helps validate suggestions!
(But does not help fix incorrect ones)
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RQ2: Over-/Under-reliance

PB
No-PB

Bigram Pandas

Correct M Incorrect B Timeout

no-PB vs O PB participants mis-judged correctness of their solutions
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RQ2: Over-/Under-reliance

"it was the behavior of a code suggestion because the
little boxes on the side allowed for you to preview the results." (P3)

"it of writing multiple print statements." (P1)

LEAP reduces over-/under-reliance on Al,

by lowering the cost of validation.
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RQ3: Cognitive Load
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Mental Demand  Hurry Performance Effort Frustration

LEAP significantly reduced the cognitive load of exploring Al

suggestions on tasks amenable to validation by execution.
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RQ4: Users' Impressions

Easy to ask for suggestions

Easy to preview a suggestion

Easy to understand a suggestion

Easy to check if a suggestion achieved my goal
Easy to modify a suggestion (before accepting)
Easy to translate my intent to a prompt

Easy to get suggestions that matched my intent

Getting suggestions was useful.

Previewing different suggestions was useful.
Inspecting a suggestion was useful.

Would like to use the tool again in the future.

Strongly Agree . Agree . Neutral . Disagree

LEAP was more usable and more useful.

Strongly Disagree

Aujigesn

Ainn
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Summary

1. Background:

a. Live Programming, for
b. Exploration of Al-Generated Code

2. LEAP: Projection Boxes + Copilot-like interface
User Study w/ 17 participants
4. Found that LEAP...

Helps with validating suggestions,

Reduces Over-/Under-reliance,

Improves Cognitive Load, and

Leaves a positive impressions on participants.

SRR
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