Live Exploration of Al-Generated Programs

Kasra Ferdowsi

with Ruangiangian (Lisa) Huang”", Michael B. James, Nadia Polikarpova, and Sorin Lerner

UCSanDiego



Overview

1. Motivation & Background:

a. Grounded Copilot
b. Live Programming

2. LEAP: Live Exploration of Al-Generated Code
User Study
4. Findings

Validating suggestions
Over-/Under-reliance
Cognitive Load
Impressions

SRR

Slides based on


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

Overview

1. Motivation & Background:

a. Grounded Copilot
b. Live Programming

Slides based on


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

LLMs for Code Generation”

GitHub OpenAl
Copilot ChatGPT

* For experienced programmers.



Background

1. Grounded Copilot: How Programmers Interact with Code-Generating Models.
Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023.

2. Understanding the Usability of Al Programming Assistants.
Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2023.

3. Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted

Programming.
Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022.

4. Expectation vs. Experience: Evaluating the Usability of Code Generation

Tools Powered by Large Language Models.
Priyan Vaithilingam, Tianyi Zhang, and Elena Glassman. 2022.



Background

In summary, programmers using Al-generated code...

Spend significant time validating code suggestions,

Have trouble evaluating the correctness of generated code,

Choose validation strategies based on fime cost, and so

Both under- and over-rely on Al code suggestions.



Background

"User interactions with Copilot can be classified into two modes—
acceleration and exploration—akin to the two systems of thought in
dual-process theories of cognition"”

* Grounded Copilot: How Programmers Interact with Code-Generating Models
Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023.



Grounded Copilot

Acceleration

unintentional

"pattern matching"

unit of focus
(sub-expression / statement)

unwilling to edit

Vs.

Prompting

Validation

Scope

Mismatch
Tolerance

Exploration

intentional with comments /
invoke side panel

explicit validation via
elimination / execution /
documentation

entire function +
multiple alternatives

willing to edit / debug /
"rip apart" / cherry-pick



Grounded Copilot

Vs.

Prompting

Validation

Scope

Mismatch
Tolerance

Exploration

intentional with comments /
invoke side panel

explicit validation via
elimination / execution /
documentation

entire function +
multiple alternatives

willing to edit / debug /
"rip apart" / cherry-pick






Live Programming

Demo!

11



Research Question:

Does offer a good interaction for

Al-generated code?

12



Overview

1. Motivation & Background:

a. Grounded Copilot
b. Live Programming

Slides based on

13


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

Overview

2. LEAP: Live Exploration of Al-Generated Code

Slides based on

14


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

Copilot's Side Panel

home > kas > projects > tmp > @ blah.py > ...

i
1
1

13

2
1
0
9

P NWDOO g

import matplotlib.pyplot as plt
import pandas as pd

def import_data(path: str):
with open(path, 'r') as f:
\ return pd.read_csv(f)

# Get the data, assuming we have the following
# column names: "group", "time", "success"

df = import_data('my_data.csv')

# create a box plot where each box refers to a group

Synthesizing 10/10 solutions (Duplicates hidden)

O 00N O Ul DNWNN

=
(<]

1l
12
13
14
15
16
17
18
19
20
21

Accept Solution

Suggestion 1

# and the y axis is the time it took to complete the ta
df.boxplot(column="time', by='group')

plt.show()

This is not necessarily the most efficient way to do it

Accept Solution

Suggestion 2

fig, ax = plt.subplots()
ax.boxplot(df['time'], labels=df['group'])
ax.set_ylabel('Time (s)')

ax.set_title('Time taken to complete a task')
plt.show()

You can find more information about box plots here.

Accent Solution

15



LEAP

Demo!



Overview

2. LEAP: Live Exploration of Al-Generated Code

Slides based on

17


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

Overview

1. Motivation & Background:

a. Grounded Copilot
b. Live Programming

2. LEAP: Live Exploration of Al-Generated Code
User Study
4. Findings

Validating suggestions
Over-/Under-reliance
Cognitive Load
Impressions

aooo

Slides based on Polikarpova 2023.

18


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

Research Questions

How does Live Programming effect...

Code Correctness
Over-/Under-Reliance on Al
Cognitive Load

Users' Impressions

P WM

19



Experimental Conditions

no-PB

Al suggestions

+

Manually Invoked
Terminal Output

PB

Al Suggestions

+

Projection Boxes

20



Tasks

Pandas

clean dataframe and compute stats using
pandas

Box Plot

overlay scatter plot over boxplot
using matplotlib

Bigrams

find the most frequent bigram in a string

String Rewriting

parse rewrite rules and apply to a string

21



Participants

Occupation:
15 academia

2 industry

Python Usage:
2 occasionally
8 reqularly

7 almost every day

22



Overview

4. Findings
a. Validating suggestions
b. Over-/Under-reliance
c. Cognitive Load
d. Impressions

Slides based on

23


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

RQ1: Correctness

PB
No-PB

Bigram Pandas

Correct M Incorrect B Timeout

LEAP helps validate suggestions!
(But does not help fix incorrect ones)

24



RQ2: Over-/Under-reliance

PB
No-PB

Bigram Pandas

Correct M Incorrect B Timeout

no-PB vs O PB participants mis-judged correctness of their solutions

25



RQ2: Over-/Under-reliance

"it was the behavior of a code suggestion because the
little boxes on the side allowed for you to preview the results." (P3)

"it of writing multiple print statements." (P1)

LEAP reduces over-/under-reliance on Al,

by lowering the cost of validation.

26



RQ3: Cognitive Load

| I%j T

Mental Demand  Hurry Performance Effort Frustration

LEAP significantly reduced the cognitive load of exploring Al

suggestions on tasks amenable to validation by execution.

27



RQ4: Users' Impressions

Easy to ask for suggestions

Easy to preview a suggestion

Easy to understand a suggestion

Easy to check if a suggestion achieved my goal
Easy to modify a suggestion (before accepting)
Easy to translate my intent to a prompt

Easy to get suggestions that matched my intent

Getting suggestions was useful.

Previewing different suggestions was useful.
Inspecting a suggestion was useful.

Would like to use the tool again in the future.

Strongly Agree . Agree . Neutral . Disagree

LEAP was more usable and more useful.

Strongly Disagree

Aujigesn

Ainn

28



Overview

4. Findings
a. Validating suggestions
b. Over-/Under-reliance
c. Cognitive Load
d. Impressions

Slides based on

29


https://cseweb.ucsd.edu/~npolikarpova/talks/ai-assistants-dl4code.pdf

Summary

1. Background:

a. Live Programming, for
b. Exploration of Al-Generated Code

2. LEAP: Projection Boxes + Copilot-like interface
User Study w/ 17 participants
4. Found that LEAP...

Helps with validating suggestions,

Reduces Over-/Under-reliance,

Improves Cognitive Load, and

Leaves a positive impressions on participants.

SRR

30



